Hard X-ray detection with a gallium phosphide Schottky diode
نویسندگان
چکیده
منابع مشابه
X-ray detection with zinc-blende (cubic) GaN Schottky diodes
The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied de...
متن کاملCharacterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode
Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01-1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orie...
متن کاملGallium self-diffusion in gallium phosphide
Ga self-diffusion in gallium phosphide ~GaP! is measured directly in isotopically controlled GaP heterostructures. Secondary ion mass spectroscopy ~SIMS! is used to monitor intermixing of Ga and Ga between isotopically pure GaP epilayers which are grown by molecular beam epitaxy ~MBE! on GaP substrates. The Ga self-diffusion coefficient in undoped GaP is determined to be D52.0 cm s exp(24.5 eV/...
متن کاملDirect Band Gap Gallium Antimony Phosphide (GaSbxP(1-x)) Alloys.
Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1-2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP(1-x) alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher S...
متن کاملEfficient water reduction with gallium phosphide nanowires
Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
سال: 2007
ISSN: 0168-9002
DOI: 10.1016/j.nima.2007.07.146